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M J Raković1,4, D R Schultz1, P C Stancil2 and R K Janev1,3

1 Physics Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6372,
USA
2 Department of Physics and Astronomy, University of Georgia, Athens, GA, 30602-2451, USA
3 Macedonian Academy of Sciences and Arts, Skopje, Macedonia

E-mail: milun@mail.phy.ornl.gov, schultz@mail.phy.ornl.gov and stancil@physast.uga.edu

Received 5 January 2001

Abstract
A general method for the construction of the optimum classical description of
a physical process on the atomic scale is presented. The method is developed
for physical systems whose quantum versions are obtained by canonical
quantization of their classical counterparts and it is in principle applicable
even in the case of ‘low’ quantum numbers. The criterion determining the
optimum description was essentially based on the comparison of the quantum
and classical probability distributions in terms of the canonical coordinates. The
main application of the method is in classical calculations of various quantities
measured in atomic collision processes.

PACS numbers: 0365S, 0270L, 0365, 3410

1. Introduction

The application of classical mechanics to atomic collision processes necessitates an appropriate
implementation of the quantum–classical correspondence. In particular, any physical
experiment is naturally divided into three distinct steps: preparation of the initial state of
the physical system, time evolution of the system, and finally the measurement. If we accept
that nonrelativistic quantum mechanics correctly describes the physical world on the atomic
scale, but nevertheless wish to apply classical mechanics in practical calculations, we should
establish a precise correspondence between the quantum and classical descriptions for each
step in the physical process/experiment. However, in many calculations in recent years, no
completely consistent way of implementing quantum–classical correspondence in the first
and third steps was formulated, especially in the limit of ‘low’ quantum numbers where the
correspondence between the classical and quantum descriptions is at least ambiguous. As for
the second step, the usual approach is clear: the unitary evolution in Hilbert space corresponds
to a canonical evolution in phase space, both described by the same Hamiltonian function.
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We have particularly in mind an approach known as the classical trajectory Monte
Carlo (CTMC) [1,2] method which is a technique to simulate inelastic ion–atom collisions by
examining statistically the results of a classical evolution of an ensemble of projectile–target
configurations chosen so as to mimic certain aspects of the corresponding quantal system. It
shares a number of features with other methodologies such as molecular dynamics simulations
in which quantal evolutions are approximated classically, either owing to necessity stemming
from the inherent complexity of treating the system quantum mechanically or due to the
assumed or apparent quantum–classical correspondence. Since CTMC and similar techniques
have been broadly and successfully applied (see, for example, [3–8]) we are motivated here
to seek an improved basis for optimally implementing the quantum–classical correspondence
for electronic states of ions and atoms applicable to ion–atom collisions and as a fundamental
underpinning.

In this paper, starting from the basic principles of quantum and classical mechanics [9], we
propose a method of implementing quantum–classical correspondence in the above-mentioned
first and third steps of the physical process. In formulating our method, which generalizes
all previously used recipes, we had in mind (in the words of Abrines and Percival [1])
only ‘plausibility arguments’ and not ‘a posteriori comparison with experiment’. It is our
understanding that the method presented in this paper cannot be inferred from the well known
phase space representations of quantum mechanics [10] or viewed as a classical limit of
quantum mechanics [11]. Rather, it follows from the simple idea of constructing the optimum
classical description of the atomic (collision) processes. In other words, in our approach
quantum mechanics serves as a source of accurate descriptions/data of the physical processes
which are then interpreted as well as possible by the classical theory.

The proposed method is in principle applicable to any case (i.e. regardless of the magnitude
of the quantum numbers) when the quantum description of the physical system is obtained by
the canonical quantization of a given classical system. In that case, by the very quantization
procedure, the canonical variables q and p are the only physical variables whose quantum–
classical correspondence is always unambiguous. Therefore, in addition to possible symmetry
conditions, the natural criterion for the optimum classical description is essentially based on
the comparison of the quantum and classical probability distributions in terms of the canonical
variables. Once the classical description is constructed, all theoretically definable quantities
are, of course, functions of q and p, although some of them may not be physically meaningful
(for example, simultaneous measurement of position and momentum is not possible due to
the uncertainty principle). This means that in our simple method there is no need to define
general correspondence between dynamical functions and self-adjoint operators in Hilbert
space [10]. In addition, this means that what we call the optimum classical description
will in general have worse agreement with experiment in terms of other quantities (energy,
angular momentum, etc) than in terms of canonical coordinates. (For instance, the phase space
distributions corresponding to atomic bound states will never have sharp binding energies.)

The plan of this paper is as follows. Section 2 is devoted to the measuring process, i.e. the
quantum–classical correspondence of final states of the system, while section 3 deals with the
correspondence of initial states. In section 4 the method is illustrated using some elementary
examples. Section 5 contains concluding remarks.

2. Correspondence of the final states: partitioning of the Hilbert and phase space

Let us start by recalling some basic quantum and classical concepts regarding the measuring
process [9]. At the end of the physical process/experiment the act of the measurement always
determines in what of the available states the system is found. More precisely, the measurement
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determines the values of several (or possibly only one) physical quantities. This means that to
each measuring apparatus corresponds a precisely defined partition of the set of possible values
of the measured physical quantities. Let S be the set of all possible values of the physical
quantities measured by the given apparatus. Then

S =
⋃
i

Si (1)

where each Si corresponds to one possible measured state of the system. For instance, if
the measured quantity is energy, each Si corresponds to a certain energy interval. Or, Si
could be the collection of certain quantum numbers: for example, (n, l) in the case of single-
electron capture or excitation during an ion–atom collision. Equation (1) leads to the phase
space partitioning in classical mechanics and to the Hilbert space partitioning in quantum
mechanics [9]. We have

H =
⊕
i

Hi Ω =
⋃
i

�i (2)

i.e. the Hilbert space H is partitioned into the direct sum of the linear subspacesHi , while the
phase space Ω is partitioned into the union of the disjoint subsets �i .

Once the three partition equations (1) and (2) are defined, the experiment and the two
theories can answer the same questions. For instance, in a typical experiment we repeat
the procedure many times and measure the probability that the system is in the state Si ,
wexp(Si) = Ni/Ntot, where Ntot is the total number of repeated measurements and Ni is the
number of events that the system was found in the state Si . For the same probability quantum
mechanics gives wq(Si) = tr(ρfPi), where Pi is the projection operator on the subspace Hi
and ρf is the density operator describing the final state of the system. Finally, the prediction
of classical mechanics is wcl(Si) = ∫

�i
Ff(p, q) dp dq, where Ff(p, q) is the distribution

function describing the final state of the system.
We assume now that the quantum mechanical description of the experiment is correct

and, therefore, that the correspondence Si ↔ Hi is well defined. Then the implementation
of the quantum–classical correspondence in the case of the measuring process reduces to the
definition of the correspondence

�i ↔ Hi (3)

i.e. to the correspondence of the partition equations (2). We shall formulate three conditions
imposed on this correspondence.

Let f be (one of) the physical observable(s) measured in the experiment. Further, let f q
i

be the part of the quantum mechanical spectrum of f corresponding to Hi , and let f cl
i be the

set of all classical values of f which correspond to �i . Then, the first and obvious condition
imposed on equation (3) is

f
q
i ⊆ f cl

i . (4)

The second condition follows from possible symmetry properties of the Hilbert space
partition, equation (2). The members in the sum, Hi , are usually invariant under time
translation (evolution) generated by a certain Hamiltonian operator, or they may be invariant
under transformations of some symmetry group. Then the same invariance properties are
required from the members �i of the phase space partition, equation (2), i.e.

T (Hi) ⊆ Hi implies T (�i) ⊆ �i (5)

where T is a (symmetry) transformation.
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The third condition imposed on equation (3) follows from the ‘density of states
correspondence principle’ [12, 13]. To formulate this condition let us define the ‘classical
and quantal weights’ [13],W cl andW q, corresponding to the partitions, equations (2). We set

W
q
i = dim(Hi) W cl

i =
∫
�i

dp dq (6)

i.e. W q
i is simply the number of linearly independent states belonging to Hi , while W cl

i is the
phase space volume of the subset �i . The third condition imposed on the correspondence
equation (3) is then

W cl
i = CW q

i (7)

for any i, where C is a constant. This condition is obviously motivated by the understanding
that in the semiclassical limit each quantum state ‘occupies’ the volume of phase space equal
to hN , where N is the number of degrees of freedom and h is the Planck constant. For any
atomic system possessing both classical and quantal descriptions one can always define a phase
space partition corresponding to a given partitioning of Hilbert space, so that the conditions,
equations (4), (5) and (7), are fulfilled. However, it is obvious that these conditions do not
define unique classical partitioning. Nevertheless, there are no other general conditions to be
imposed which are based solely on the understanding of the measuring process. Additional
conditions may only come from some ‘a posteriori comparison with experiment’.

3. Correspondence of the initial states

In experiments, the physical systems are initially prepared (i.e. their initial states are
determined) by fixing the values (or ranges of values) of a finite number of physical quantities.
In a complete analogy with the measurement, to any such state preparation one can associate
partitions of the Hilbert and phase spaces, equation (2). This means that in both descriptions of
the physical experiment/process, quantal and classical, the initial state of the system belongs to
one of the members, e.g. �i0 and Hi0 , of the associated partitions. In general, the initial states
are not completely described by belonging to�i0 orHi0 (this is the case only if the initial state
is described by a Hilbert space vector, i.e. when Hi0 is one-dimensional, or, correspondingly
by a phase space point, i.e. when �i0 contains only one point). The quantum mechanical
description of the initial state is given by the (self-adjoint, positive) density operator ρin [9],
while the classical description is given by the (positive) distribution function in phase space
fin(q, p), which satisfy the following normalization conditions:

Tr ρin = 1
∫

Ω
fin(q, p) dq dp = 1. (8)

Therefore, the implementation of the quantum–classical correspondence in the case of the
initial state preparation reduces to the definition of the correspondence

ρin ↔ fin(q, p) (9)

or, more precisely, to the formulation of the conditions imposed on fin(q, p)when ρin is given.
The first condition follows from the requirement that ρin and fin(q, p) belong to the

corresponding members Hi0 and �i0 . That ρin ‘belongs to’ Hi0 precisely means that

ρinPi0 = Pi0ρin = ρin ρinPi = Piρin = 0 for i �= i0 (10)

(recall that Pi is the projection operator onHi). We now require correspondingly that fin(q, p)

‘belongs to’ �i0 and we define that condition by

fin(q, p) �= 0 for (q, p) ∈ �i0∫
�\�i0

fin(q, p) dq dp � 1. (11)
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In general, the initial state of the system is stationary under a certain Hamiltonian:

[H0, ρin] = 0. (12)

(For instance, in collision processes, H0 describes the motion before the interaction takes
place.) Therefore, the correspondence principle requires that

{H0(q, p), fin(q, p)}PB = 0 (13)

where PB stands for the Poisson bracket. If ρin possesses certain symmetry properties then
there are further conditions imposed on fin(q, p). Assume that ρin commutes with a finite
number of linearly independent observables

[Ai, ρin] = 0 i = 1, . . . , s. (14)

(In the language of the theory of groups, Ai are generators of the continuous symmetry
group of the initial state ρin, which is in general a subgroup of the symmetry group of the
Hamiltonian H0.) Then, again, the quantum–classical correspondence requires that

{Ai(q, p), fin(q, p)}PB = 0 i = 1, . . . , s. (15)

Ifρin possesses any discrete symmetry the same property should be imposed onfin(q, p). From
condition equations (13) and (15) it follows that in the initial distribution function fin(q, p)

not all arguments (qi, pi), i = 1, . . . , N , are independent. Indeed, these two conditions can
equivalently be expressed by requiring that

fin(q, p) = F(H0(q, p), C1(q, p), . . . , Ck(q, p)) (16)

i.e. that fin is a function of the energy and all independent constants of motion Ci(q, p) which
commute with the variables Ai(q, p):

{H0(q, p), Ci(q, p)}PB = 0

{Aj(q, p), Ci(q, p)}PB = 0
i = 1, . . . , k j = 1, . . . , s. (17)

(In the language of the theory of groups, Ci are Kasimir operators of the symmetry group of
the initial state fin(q, p).)

To summarize, we have so far defined two conditions imposed on fin. The first,
equation (11), follows from the correspondence of the global structures of the phase space and
the Hilbert space of the system. The second one, equation (16), follows from the requirement
that the symmetry properties of fin and ρin are identical. In order to define fin(q, p) which
corresponds to a given ρin, we need to make a direct comparison of the predictions of the two
descriptions regarding the measurements that can be performed on the physical system.

According to quantum mechanics one can simultaneously measure at most the set of
complete variables [9]. From the set of canonically conjugate classical variables {qi, pi, i =
1, . . . , N}, one can form a set of N complete variables and there are 2N possible choices.
Two standard choices {qi, i = 1, . . . , N} and {pi, i = 1, . . . , N} lead, respectively,
to the coordinate and momentum representations of the density operator. However, any
choice of the form {qil , pjk , l = 1, . . . , m; k = m + 1, . . . , N}, is equally possible. Let
xI = {xIi , i = 1, . . . , N} be any of 2N (I = 1, . . . , 2N ) such sets of complete observables
and let yI = {yIi , i = 1, . . . , N} denote the set of the remaining canonical coordinates. Then,
the quantum and classical probability distributions in variables xI are given by

w
q
I (x

I ) = 〈xI |ρin|xI 〉 wcl
I (x

I ) =
∫
fin(x

I , yI ) dyI . (18)

We now define the degree of coincidence of the predictions of ρin and fin(q, p)when variables
xI are measured:

wI =
(∫ √

w
q
I (x

I )wcl
I (x

I ) dxI
)2

0 � wI � 1. (19)
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In other words, from the standpoint of variables xI , wI measures how ‘close’ the descriptions
of the physical systems given by ρin and fin(q, p) are. In general, the probability distributions
for different sets of complete variables are independent, therefore the expression

w =
(
M∏
I=1

wI

)1/M

M = 2N 0 � w � 1 (20)

defines the degree of coincidence of the classical and quantum descriptions when all possible
sets of complete variables, which can be chosen from the set of canonical variables, are
measured. We shall refer to this quantity as the ‘probability’ that the quantum and classical
descriptions of the physical system coincide. Now we define fin as the distribution function
which has the form equation (16) (where F is any non-negative continuous function), which
satisfies equations (8) and (11), and which is ‘closest’ to ρin, i.e. which maximizes w,
equation (20). In other words, the optimum classical phase space distribution is a solution
of the variational problem of maximization of w, which is viewed as a nonlinear functional in
the space of all non-negative continuous functions F .

Concluding this section we note that we have defined the degree of coincidence between
classical and quantum descriptions of the physical system by comparing the corresponding
predictions of all possible nonequivalent measurements of canonical coordinates which are
well defined in both theories. For instance, the use of a set of canonical coordinates which
mixes coordinates and momenta is perfectly acceptable in classical mechanics, but it is well
known that, in general, the subsequent quantization does not yield the same quantum system.
(It is interesting to note that even the use of spherical coordinates in the case of a one-particle
system leads to difficulties since the classical momentum pr conjugate to the coordinate r does
not possess its quantum counterpart [14].)

4. Examples

In this section we shall illustrate our method using as examples two fundamental physical
systems: the one-dimensional harmonic oscillator and a particle moving in a three-dimensional
centrally symmetric potential. The second system has an important application in ion–atom
collision theory, where it is often used to describe approximately the motion of the ‘active’
electron, in its initial and final states, in such processes as charge exchange and target excitation.

4.1. Harmonic oscillator

In this case the Hamiltonian and the corresponding quantum energy spectrum are H =
p2/2 + q2/2 and En = n + 1/2, where we have used the system of units h̄ = m = ω = 1.

4.1.1. Final states. If at the end of some process the measured physical quantity is energy,
the appropriate partitions of the Hilbert and phase space are

H =
⊕
n

Hn Ω =
⋃
n

�n (21)

whereHn is the one-dimensional subspace spanned by the eigenstate |n〉. EachHn is stationary
(i.e. invariant under time evolution), therefore the same property is required from �n, see
equation (5). This implies that each �n has the form

�n =
{
q, p : E(1)n <

p2 + q2

2
< E(2)n

}
(22)
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i.e. the second formula in equation (21) is essentially the partition of the real-energy semiaxes,
E � 0. Now, since dim(Hn) = 1 and

W cl
n =

∫
�n

dp dq = 2π
∫
�n

dE = 2π(E(2)n − E(1)n ) (23)

the condition equations (7), (4) become

2π(E(2)n − E(1)n ) = C E(1)n � n + 1/2 � E(2)n . (24)

The last equation allows a simple solution:

E(1)n = n E(2)n = n + 1 C = 2π (25)

and we see (since in our units 2π = h) that in this partition each eigenstate |n〉 ‘occupies’
exactly the phase space volume equal to h.

4.1.2. Initial states. If the initial state of a process is specified by the quantum number n, its
quantum description is given by the wavefunction (in this case the density operator is simply
a projector ρn = |n〉〈n|):

〈q|n〉 = &n(q) = exp(−q2/2)

(
√
π 2n n!)1/2

Hn(q) (26)

where Hn is a Hermite polynomial. The momentum representation wavefunction has the
same functional form, 〈p|n〉 = &n(p), and the probability distributions in coordinate and
momentum representations are given by

w
(n)q

1 (q) = wqn(q) w
(n)q

2 (p) = wqn(p) wqn(q) = &n(q)2. (27)

Our task is to define the corresponding classical distribution function fn(q, p). It has to
be positive, normalized, and stationary, i.e. the condition equations (13) and (8) require that

fn(q, p) = Fn(E) � 0 E = p
2 + q2

2
2π
∫ ∞

0
Fn(E) dE = 1 (28)

while the condition equations (11), consistent with the phase space partition of the previous
section, become

Fn(E) �= 0 for n < E < n + 1

2π

(∫ n

0
Fn(E) dE +

∫ ∞

n+1
Fn(E) dE

)
� 1.

(29)

The corresponding (classical) coordinate and momentum probability distribution have the same
functional form and are given by

w
(n)cl
1 (q) = wcl

n (q) w
(n)cl
2 (p) = wcl

n (p) wcl
n (q) =

∫ ∞

−∞
Fn((p

2 + q2)/2) dp. (30)

Finally, the degree of coincidence between the classical state fn(q, p) (generated by Fn) and
the quantum state |n〉 is defined by equations (19) and (20), and reduces to

wn =
(∫ ∞

−∞
dq|&n(q)|

√∫ ∞

−∞
Fn((p2 + q2)/2) dp

)2

. (31)

In generalwn is smaller than one. However, in this simple case it is instructive to consider
in a little more detail the condition that wn actually reaches unity. It is easily shown that the
formal condition wn = 1 is, due to Schwartz’s inequality, equivalent to the integral equation∫ ∞

−∞
Fn(E) dp = exp(−q2)√

π 2n n!
Hn(q)2 E = p

2 + q2

2
. (32)
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It appears that, if the non-negativity of Fn is not required, the solutions of the last equation
exist and they coincide with the Wigner distributions corresponding to the eigenstates of the
harmonic oscillator [10]:

FW
n (E) = (−1)n

π
exp(−2E)Ln(4E) (33)

where Ln are Laguerre polynomials. That the Wigner distributions are obtained in this way
is a consequence of the well known fact that in the case of the harmonic oscillator, the
propagation of the Wigner functions (which are just phase representations of the wavefunctions
and therefore propagate according to unitary Schrödinger evolution) is also generated by the
classical Hamiltonian function [10]. Therefore, and this is the case only when the Hamiltonian
is a quadratic form of the canonical coordinates, the stationary Wigner distributions depend
on the (classical) energy only. This is, however, the necessary requirement for our classical
distributions, equation (28).

Among functions (33), the one corresponding to the ground state happens to be the
(only) non-negative function. Therefore, in our method, it generates the optimum classical
distribution

F0(E) = 1

π
exp(−2E) f0(q, p) = 1

π
exp(−q2 − p2) (34)

corresponding to the ground state of the harmonic oscillator. The optimum classical
distributions corresponding to excited states are generated by the functions Fn(E) which
maximize wn, equation (31). Instead of constructing such distributions, we shall consider
here the following functions:

Fn(E) =
{
(2α/π) exp(−2α) if α � 0

0 otherwise
α = E − (n− 1/2) n � 1. (35)

These functions do not maximize wn. Nevertheless, they will serve as a good illustration of
our method. It is easily found that for them

〈E〉n = 2π
∫ ∞

0
E Fn(E) dE = n + 1/2 (36)

i.e. the average energies coincide with the quantum levels, while for the probabilities wn
numerical integration of equation (31) gives

w1 = 0.93 w2 = 0.91 w3 = 0.89 w4 = 0.88 w5 = 0.87 . . . . (37)

We shall compare these distributions with distributions corresponding to the classical
microcanonical ensembles, which are often used in practical calculations. These are defined
by

FM
n (E) = 1

2π
δ(E − n− 1/2). (38)

This function generates the following coordinate probability distribution:

wMcl
n (q) =

∫ ∞

−∞
dpFM

n (q, p) =



1

π
√

2n + 1 − q2
if |q| < √

2n + 1

0 otherwise
(39)

and equation (31) becomes

wM
n = 4

π

(∫ √
2n+1

0
dq

|&n(q)|
(2n + 1 − q2)1/4

)2

. (40)
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Figure 1. Probability distributions in coordinate space of the eigenstates of the harmonic oscillator
for (a) n = 0, (b) n = 1, (c) n = 3 and (d) n = 5. Quantum probabilities are represented by thin
solid curves, dashed ones correspond to the microcanonical ensembles, while the thick solid curves
are the probabilities generated by the classical distribution functions Fn, equations (34) and (35).
In the case n = 0 the solid curves coincide.

Numerical integration of the last formula gives

wM
0 = 0.71 wM

1 = 0.73 wM
2 = 0.74

wM
3 = 0.75 wM

4 = 0.75 wM
5 = 0.76 . . . .

(41)

Note that in the semiclassical limit, i.e. as n → ∞, this sequence converges (although very
slowly) to one. We see that the degree of coincidence with the quantum probabilities is much
greater for the phase space distributions generated by the functions Fn, equation (37), than
for the microcanonical ensemble. This is also illustrated in figure 1, where the quantum
probability distributions in the coordinate space of several eigenstates are compared with the
corresponding classical probabilities generated by the two phase space distributions. We see
that both classical distributions essentially perform averaging of the quantum oscillations,
while near the turning points, where the microcanonical ensembles generate divergences, our
distributions show very good agreement with the quantum predictions.

4.2. A particle in the centrally symmetric potential

In this case the Hamiltonian is defined by H = p2/2 + V (r), where atomic units me = e =
h̄ = 1 are used. As already mentioned, it is often used to describe the interaction between the
electron and the projectile or target in atomic collision processes.
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4.2.1. Final states. If at the end of a process one measures the binding energy and angular
momentum of the electron motion (for example, if one measures cross sections for capture (or
excitation) into atomic states with defined quantum numbers (n, l)) the appropriate partitions
of the Hilbert and the phase spaces are

Hb =
⊕
n,l

Hn,l Ωb =
⋃
n,l

�n,l (42)

where Hb is the subspace of Hilbert space spanned by the bound states, while Ωb is the subset
of phase space containing only bound orbits. The subspaces Hn,l are spanned by the states
|n, l,m〉, m = 0,±1, . . . ,±l, and their quantal weights, equation (6), are

W
q
n,l = 2l + 1. (43)

Each Hn,l is stationary and rotationally invariant and, by equation (5), the same property
is required from �n,l . This is automatically achieved by constructing the partition of Ωb,
equation (42), via partitioning of the classical space of all possible pairs (E,L) of energy and
angular momentum which correspond to the bounded motion (i.e. E < 0). Therefore, we
shall view the second formula in equation (42) also as a partition of such space, denoted by
Ωb, while �n,l will represent two-dimensional subsets of E,L space.

With this notation the condition equation (4) becomes(
En,l,

√
l(l + 1)

)
∈ �n,l (44)

whereEn,l is the energy level corresponding to the quantum numbers n, l. Further, in this case
the classical weightsW cl

n,l =
∫
�n,l

dr dp are equivalently expressed by

W cl
n,l =

∫
�n,l

f (E,L) dE dL

f (E,L) = 16π2L

∫
dr√

2E − L2/r2 − 2V (r)

(45)

where the integration in the second formula ranges over all points r for which the square root
in the integrand is real. The function f (E,L) can be named the classical density function in
the E,L space. The condition, equation (7), now becomes

W cl
n,l =

∫
�n,l

f (E,L) dE dL = C(2l + 1) (46)

where C is a constant.
We shall now consider two particular forms of the central potential V (r). In describing

the interaction between an ‘active’ electron and the many-electron ‘core’ of an incompletely
stripped ion, the model Green potential [15, 16]

V (r) = (1 −�(r))Ne − Z
r

�(r) = 1

(η/ξ)(exp(ξr)− 1) + 1
(47)

may be adopted. HereZ is the nuclear charge,Ne is the number of electrons in the ionic ‘core’,
and ξ and η are suitably chosen parameters. When r → ∞

V (r)→ −Z∞
r

Z∞ = Z −Ne (48)

and we introduce the classical action nc by E = −Z2
∞/2n

2
c . Instead of equation (45) we write

W cl
n,l = (2π)3

∫
�n,l

g(nc, L
2) dnc dL2 (49)
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Figure 2. A partitioning of the classical nc, L space of the e–Na+ system. The solid curve is the
boundary of the space. Crosses correspond to quantum levels calculated using the Green potential.
The shaded area corresponds to the phase space region inside the ionic ‘core’ which is already
‘populated by the inner electrons’.

g(nc, L
2) = Z2

∞
πn3

c

∫ r2

r1

dr√−Z2∞/n2
c − L2/r2 − 2V (r)

(50)

where r1 and r2 are the turning points of the radial motion, and g(nc, L
2) can be considered as

the density function in the classical nc, L
2 space.

To be more concrete we shall consider the case of the sodium atom. Sodium is one of the
Rydberg-like atoms, i.e. it possesses only one electron beyond the closed shells. Therefore, the
interaction of the ion Na+ and the outer electron is well described by the centrally symmetric
potential. For that case the parameters of the Green potential are [16] Z = 11, Ne = 10,
ξ = 1.712, η = 2.85, and the solution of the corresponding Schrödinger equation shows
that the energy spectrum of the e–Na+ system can be represented by a quantum defect formula
En,l = −Z2

∞/2(n− δl)2, where the quantum defect δl is negligible for l > 2, and is practically
independent of n. Figure 2 shows a portion of the classical nc, L space together with the
quantum levels, defined by the (n− δl,

√
l(l + 1)) pairs.

A numerical calculation of the integral in equation (50) shows that, for nc > 2, the function
g(nc, L

2) is negligibly different from 1. Therefore, the simple ‘rectangular’ partition of the
phase space showed in figure 2 satisfies the desired condition equation (46). Formally, to the
states not lying in the immediate vicinity of the classical nc, L space boundary, one can assign
rectangular subsets �n,l defined by

�n,l = {nc, L : n− δl − 0.5 < nc < n− δl + 0.5, l < L < l + 1}. (51)

The exception is the ground state 3s whose ‘cell’ is somewhat wider. To the states lying near
the classical space boundary (3p, 3d, 4f, 5g, . . .), one assigns, as shown in figure 2, suitably
chosen cells using series of slanted lines whose intersections with the classical boundary are
defined by the points nc = L = k+1/3, k = 2, 3, . . . . Obviously the point (n−δl,

√
l(l + 1))
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belongs to �n,l , while equations (49) and (50) give

W cl
n,l = (2π)3(2l + 1) (52)

i.e. the condition equation (46) is satisfied with C = (2π)3 = h3(au). Finally, note that the
shaded area in figure 2 is not associated to any quantum state. This area obviously corresponds
to the motion inside the ionic ‘core’, i.e. to the phase space region already ‘populated by the
inner electrons’.

In the case of the Coulomb interaction, V (r) = −Z/r , the quantum energy depends only
on n, En = −Z2/2n2, and in that case it is meaningful to measure cross sections for capture
(excitation) into states defined only by the quantum number n. Then, instead of equation (42)
we have Hb = ⊕

n Hn, Ωb = ⋃
n �n, and the partitioning of the classical subspace Ωb is

realized via partitioning of the energy semiaxis E < 0. The corresponding quantal weights
are

W q
n =

n−1∑
l=0

W
q
n,l = n2. (53)

In this case equation (50) gives g(nc, L
2) = 1, where as before E = −Z2/2n2

c . Therefore,
since the boundary of the classical nc, L space is the straight line L = nc, equation (49) gives

W cl
n = (2π)3

∫
�n

dL2 dnc = (2π)3
∫
�n

n2
c dnc = (2π)3 n

3
2 − n3

1

3
(54)

and�n = [n1, n2] represents a subset of the one-dimensional classical nc space containing the
point n. Therefore, the condition equations (7) and (4) become

(2π)3
n3

2 − n3
1

3
= Cn2 n1 < n < n2. (55)

Setting C = (2π)3 = h3(au) one easily constructs a solution of the last equation:

n1 = [(n− 1/2)(n− 1)n]1/3 n2 = [n(n + 1/2)(n + 1)]1/3. (56)

It is further possible to partition each subset �n in the form �n = ⋃
l �n,l and to obtain the

phase space partition equation (42). It is easily shown that (in the Coulomb case) the classical
weights of the subsets

�n,l =
{
nc, L : n1 < nc < n2,

l

n
<
L

nc
<
l + 1

n

}
(57)

are given by equation (52), and the condition equation (46) is satisfied. The above ‘binning’
(equation (56)) in the case of the Coulomb interaction was first proposed by Becker and
MacKellar [13], and has been used in practical applications (see, for example, [17–21]).
The phase space partition generated by the sets equation (57) is shown in figure 3(a), while
figure 3(b) shows the ‘rectangular’ partition obtained for the case of the Coulomb interaction.
These two partitions are continuous deformations of each other. However, the partitioning
in figure 3(a) is characteristic of the Coulomb interaction, since in that case, the quantum
spectrum is degenerate in both quantum numbers n and l. Therefore, one can choose either to
partition the phase space by the subsets�n, with further partitioning by�n,l as in figure 3(a), or
to partition the phase space by the subsets�l , with further partitioning by�n,l , as is essentially
done in the partitionings in figure 3(b) and figure 2.
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Figure 3. Partitionings of the classical nc, L space of the hydrogen atom: (a) Becker–MacKellar
partitioning defined by equation (57). (b) Rectangular partitioning; the subsets corresponding to
the states not lying near the space boundary are defined by �n,l = {nc, L : n − 1/2 < nc <

n + 1/2, l < L < l + 1}. The points (k + 1/3, k + 1/3), k = 0, 1, 2, . . . , are the intersections of
the space boundary and the slanted lines used to define the subsets lying near the boundary.

4.2.2. Initial state. The initial state of the electron is usually defined by specifying the initial
quantum numbers (n0, l0). Therefore, we shall assume that the relevant partitions of the Hilbert
and phase spaces, equation (42), are defined. The quantum description of the initial state is
given by the density operator

ρin = 1

2l0 + 1

l0∑
m=−l0

|n0, l0,m〉〈n0, l0,m| (58)

which is rotationally invariant. As a consequence its diagonal elements, i.e. the probability
distributions, equation (18), in coordinate and momentum representations are also rotationally
invariant:

w
q
1(r) = 〈r|ρin|r〉 = ρ1(r) w

q
8(r) = 〈p|ρin|p〉 = ρ8(p). (59)
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As explained in the previous section, these probability distributions correspond only to two
out of 23 = 8 possible representations, i.e. choices for the set of complete variables. Due to
the rotational symmetry of ρin, the remaining six quantum probability distributions possess
cylindrical symmetry and are expressed in terms of only two independent functions, ρ2 and
ρ5:

w
q
2(x, y, pz) = 〈xypz|ρin|xypz〉 = ρ2

(√
x2 + y2, pz

)
w

q
3(x, py, z) = ρ2

(√
x2 + z2, py

)
w

q
4(px, y, z) = ρ2

(√
y2 + z2, px

)
w

q
5(x, py, pz) = 〈xpypz|ρin|xpypz〉 = ρ5

(
x,

√
p2
y + p2

z

)
w

q
6(px, y, pz) = ρ5

(
y,

√
p2
x + p2

z

)
w

q
7(px, py, z) = ρ5

(
z,

√
p2
x + p2

y

)
.

(60)

Our task is to define the corresponding classical distribution function fin(r,p). It has to
be stationary and rotationally invariant, i.e. the condition equation (16) requires that

fin(r,p) = F(E(r,p), L(r,p)) E = p
2

2
+ V (r) L =

√
p2r2 − (p · r)2. (61)

The above function generates the following probability distribution in the classicalE,L space
(see previous section):

wcl
in(E,L) = 16π2L F(E,L)

∫
dr√

2E − L2/r2 − 2V (r)
. (62)

The integration is performed over all points r for which the square root in the integrand is real.
The normalization condition is∫

Ωb

wcl
in(E,L) dE dL = 1 (63)

and Ωb is the subset of the E,L space which corresponds to the bound orbits. The condition
that fin(r,p) ‘belongs’ to �n0l0 , equation (11), is expressed by

wcl
in(E,L) �= 0 for (E,L) ∈ �n0l0∫
Ωb\�n0 l0

wcl
in(E,L) dE dL� 1 (64)

where �n0l0 is the subset of Ωb associated to the quantum numbers (n0, l0) in the partition
equation (42).

Finally, fin(r,p), equation (61), generates classical probability distributions in various sets
of complete (quantum) variables, see equation (18). As in the quantum case, the probability
distributions in coordinate and momentum representations are rotationally invariant, i.e.

wcl
1 (r) =

∫
F(E,L) dp = f1(r) wcl

8 (p) =
∫
F(E,L) dr = f8(p) (65)

while the remaining six probability distributions are cylindrically symmetric and expressed in
terms of the two independent functions, f2 and f5:

wcl
2 (x, y, pz) =

∫
F(E,L) dpx dpy dz = f2

(√
x2 + y2, pz

)
wcl

3 (x, py, z) = f2

(√
x2 + z2, py

)
wcl

4 (px, y, z) = f2

(√
y2 + z2, px

)
wcl

5 (x, py, pz) =
∫
F(E,L) dpx dy dz = f5

(
x,

√
p2
y + p2

z

)
wcl

6 (px, y, pz) = f5

(
y,

√
p2
x + p2

z

)
wcl

7 (px, py, z) = f5

(
z,

√
p2
x + p2

y

)
.

(66)
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In the above formulaeE = p2/2 +V (r) and L =
√
p2r2 − (p · r)2. Now, the probability that

ρin and fin(q, p) describe the same physical system, equation (20), is given by

w = (w1w
3
2w

3
5w8)

1/8 (67)

where, from equations (19) and equations (59), (60), (65) and (66), it follows that

w1 =
(

4π
∫ ∞

0

√
f1(r)ρ1(r) r

2 dr

)2

w8 =
(

4π
∫ ∞

0

√
f8(p)ρ8(p) p

2 dp

)2

w2 =
(

2π
∫ ∞

0
ρdρ

∫ ∞

−∞
dp

√
f2(ρ, p)ρ2(ρ, p)

)2

w5 =
(

2π
∫ ∞

0
p dp

∫ ∞

−∞
dz
√
f5(z, p)ρ5(z, p)

)2

.

(68)

Now, we define the classical phase space distribution which describes the system defined by
the quantum numbers (n0, l0) (more precisely with the density operator equation (58)) as the
one which has the form equation (61), satisfies the condition equation (64), and maximizes
the probability w, equation (67). In other words, it is a solution of the variational problem of
maximization ofw, which is viewed as a functional in the space of all non-negative continuous
functions F(E,L). In general it is a difficult problem to solve, and in practical applications
it may be satisfactory to maximize w in the narrower, reasonably chosen, variational space of
trial functions F(E,L).

In many practical applications of the CTMC method, a popular choice for the initial
distribution was a microcanonical ensemble for which fin ∼ δ(H(r,p) − En0,l0) [2, 12]. In
that case, the set of phase space points for which the distribution function does not vanish is of
measure zero in the phase space, and it obviously does not satisfy the first of the conditions in
equation (64). With such a choice for the initial distribution, the majority of the phase space
points are excluded in the descriptions of the initial states while each point necessarily belongs
to some final state.

As mentioned above, when maximizing the probability w, one might be compelled to
narrow down the class of trial functionsF to reasons of practicality. Another possibility is to try
to construct a reasonable classical distribution by solving the easier task of maximizing notw,
but some of the partial probabilitieswi . For example, it was shown ([22] and references therein)
that the maximization ofw1 defines a very good classical description of the ground state of the
hydrogen atom. The phase space distribution defined in this way is in some sense opposite to the
microcanonical ensemble which maximizesw8. However, in general, such an approach cannot
give reasonable results (indeed one can easily construct very different phase space distributions
which define the same probability distrubtions in one of the sets of complete variables).

We shall conclude this section by considering the simple but important case when ρin

describes the ground state of the hydrogen atom. Then

ρ1(r) = exp(−2r)

π
ρ8(p) = 8

π2(p2 + 1)4

ρ2(ρ, pz) = 2

π2

ρ2

1 + p2
z

K2
1

(
ρ

√
1 + p2

z

)

ρ5(z, p) = (1 + |z|
√

1 + p2)2

π(1 + p2)3
exp

(
−2|z|

√
1 + p2

)
.

(69)

where K1 is the Bessel function. As in the previous section, it is convenient to use instead
of energy E the classical action nc defined by E = −1/2n2

c . We shall also introduce the
scaled angular momentum by L̃ = L/nc. Then, if we adopt the phase space partition given in
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equation (57), the classical nc, L̃ space denoted by Ωb and its subset�10 corresponding to the
initial state with n = 1, l = 0, are

Ωb = {(nc, L) : 0 < nc <∞, 0 � L̃ � 1}
�10 = {(nc, L̃) : 0 < nc < 31/3, 0 � L̃ � 1}. (70)

The classical distribution function takes the form fin(r,p) = F(nc, L̃) and the probability
distribution in the classical nc, L̃ space (see the previous section) becomes

wcl
in(nc, L̃) = 16π3n2

cL̃ F (nc, L̃). (71)

As mentioned above, the maximization of the ‘probability’w, equation (67), is hard to achieve
in practical calculations, so we now define a smaller class of trial functions F . Since n = 1
and l = 0, we set

F(nc, L̃) = (1 − L̃2)a

C(a, b)
exp(−b(nc − 1)2) (72)

where C is a normalization constant, and a and b are to be seen as variational parameters.
Note that after this choice of function F the variables nc and L̃ are statistically independent.
From the normalization condition, equation (63), it follows that

C(a, b) = 8π3

a + 1

∫ ∞

0
n2

c exp(−b(nc − 1)2) dnc (73)

while the second condition in equation (64) requires that∫ ∞

31/3
n2

c exp(−b(nc − 1)2) dnc �
∫ ∞

0
n2

c exp(−b(nc − 1)2) dnc. (74)

Finally, the substitution of equations (69), (72), (66) and (68) into (67) defines a function
w(a, b). Numerical calculation shows that this function reaches the maximum of w = 0.935
(partial probabilities being w1 = 0.996, w2 = 0.918, w5 = 0.918 and w8 = 0.977) for a = 0
and b = 10.1, i.e. these parameter values give the optimal classical distribution in the form (72).

As in the case of the harmonic oscillator, we shall compare this distribution with the one
corresponding to the microcanonical ensemble which is defined by

FM(E,L) = 1

(2π)3
δ(E + 1/2). (75)

With this function the four independent probability distributions, equations (66), are easily
calculated:

fM
1 (r) =




1

2π2

√
2

r
− 1 if r � 2

0 otherwise
fM

8 (p) = 8

π2(p2 + 1)4

fM
2 (ρ, pz) =




1

2π2

√
4

(1 + p2
z )

2
− ρ2 if ρ � 2

1 + p2
z

0 otherwise

fM
5 (z, p) =




3

2π2

(1 + 2
3a)

√
a(1 − a) + 1

2 arccos(2a − 1)

(1 + p2)5/2
if a = |z|1 + p2

2
� 1

0 otherwise.

(76)

It is interesting that in this case the momentum probability distribution fM
8 coincides with the

quantum one, see equation (69), i.e.wM
8 = 1. This is one of the reasons why this distribution is

often used in practical calculations. However, the numerical calculations show that in this case
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Figure 4. Probability distributions in (a) coordinate and (b) momentum space for the ground
state of the hydrogen atom. Quantum probabilities are represented by thin solid curves, dashed
ones correspond to the microcanonical ensembles, while the thick solid curves are the probabilities
generated by the classical distribution function F , equation (72), with a = 0, b = 10.1. In plot (b)
the thin solid and dashed curves coincide.

the total degree of coincidence with the quantum state is wM = 0.800 (partial probabillities
beingwM

1 = 0.740,wM
2 = 0.736,wM

5 = 0.828 andwM
8 = 1), i.e. it is much smaller than in the

case of the distribution in the form (72). To illustrate this, figure 4 compares the probability
distributions in coordinate and momentum representations generated by these two classical
phase space distributions with the corresponding quantum probabilities.

5. Concluding remarks

In this paper we have presented a fairly general method for the construction of the optimum
classical description of a physical process on the atomic scale. The method is not the
consequence of any classical or semiclassical limit of quantum mechanics, and it is not related
to known phase space representations of quantum mechanics. Our method is developed for
physical systems whose quantum versions are obtained by the canonical quantization of their
classical counterparts, and it is in principle applicable even in the case of ‘low’ quantum
numbers. The criterion for the optimum description was essentially based on the comparison
of the quantum and classical probability distributions in terms of the canonical coordinates.
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The main application of the method is in classical calculations of various quantities measured
in atomic collision processes.

As a look forward toward other work, we note that a very unorthodox improvement of
the method would be a possible modification of the ‘second step’ of the physical process,
i.e. evolution. In one of the quasiclassical methods applied to atomic collision processes,
the Wigner phase space distributions are used for the representation of the initial and final
states of the system but the evolution, in the zeroth approximation, is realized by canonical
transformation generated by the classical Hamiltonian function [10]. Higher corrections are
obtained by using noncanonical time evolution (in fact the exact evolution is just the phase space
representation of the unitary evolution). Analogously, in our method one might try to modify
the Hamiltonian function describing the evolution so that better agreement with experiment is
reached. For example, in applying classical mechanics to the description of the helium atom
seen as a three-body system, one might try to modify the interaction potential (for example,
somehow remove the Coulomb singularity) so that the stable bound states are classically
possible. Of course, the change in the potential will inevitably introduce modifications: for
example, in the quantum spectrum of the hydrogen atom. However, if these modifications are
of the order of other well known corrections to the Coulomb spectrum the modified interaction
potential might prove useful.
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